
Paolo 
GiacomazziCopyright © 2009 Paolo Giacomazzi.  All rights reserved.1

Series of nodes
The bounded variance network calculus
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The bounded-variance network calculus

The bounded-variance network calculus (giacomazzi-Saddemi 2008) is 
founded on two main assumptions that lead to an approximated calculation 
of delay, rather than true upper bounds

The first approximation is that, in order to calculate the distribution of delay 
in a network node, the Choe’s and Shroff’s Maximum Variance Asymptotic 
(MVA) upper bound is applied

Consequently, traffic is assumed to be Gaussian

In fact, the MVA provides upper bounds for the probability that the delay in a 
network node exceeds a given threshold, given Gaussian input traffic flows

Under specific conditions, the methods of the referred work can be applied 
also with non-Gaussian traffic flows as with a large number of flows the 
distribution of the compound traffic converges to a Gaussian under the broad 
hypotheses of the Central Limit Theorem

With non-Gaussian traffic, the MVA provides approximations of delay, rather 
than upper bounds, with a tightness that decreases as the deviation of the 
distribution of traffic from a Gaussian grows
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The bounded-variance network calculus

The bounded-variance network calculus applies iteratively the MVA to 
the nodes composing the end-to-end path of a traffic flow

At a given node, the inputs of the MVA are the two-moment 
descriptions (average value and variance) of the traffic flows feeding 
the node

Given the statistical characterization of traffic flows at the input of a 
scheduler, the bounded-variance network calculus evaluates the 
distribution of traffic streams at the output of the scheduler

In this way, it is possible to apply the MVA to the subsequent 
scheduler and to proceed iteratively

As a consequence, the bounded-variance network calculus can be 
constructed as a sequence of simple and clear steps
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The bounded-variance network calculus

Given a sequence of  nodes, numbered from 1 to H, crossed by a 
tagged traffic flow, the statistical description of the output traffic of 
node h is calculated, given its input traffic

Since the input of node h+1 is the output of the hth node, it is possible 
to obtain a statistical description of the traffic offered to node h+1 as a 
function of the input traffic of node h

By proceeding iteratively through the series of nodes constituting the 
end-to-end path of the tagged flow, the probability density  of the 
delay at the hth node is calculated by exploiting the MVA

The final step takes into account that, in a series of  nodes, the end-
to-end delay  is equal to: d
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1
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2
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The bounded-variance network calculus

The second assumption of the bounded-variance network calculus is 
that the random variables  are assumed to be statistically independent, 
therefore, the density of the end-to-end delay is calculated as: 
f

de2e
(t)=d

d1
(t)+f

d2
(t)+...+f

dH
(t) 

from which delay  is straightforwardly computed

While this assumption introduces an additional approximation in the 
framework, it simplifies radically calculations, as it is not necessary to 
calculate an end-to-end service curve, that is, the most complex task 
of classical network calculus is avoided

In our framework, the delay distribution at each node is calculated 
with the service curve of the isolated node and the distortion of the 
covariance structure of traffic crossing nodes is accounted for with a 
novel method for the calculation of the variance of the cumulative 
traffic at the node’s output, given the characterization of input traffic 
flows
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The bounded-variance network calculus

While this assumption introduces an additional approximation in the 
framework, it simplifies radically calculations, as it is not necessary to 
calculate an end-to-end service curve, that is, the most complex task 
of classical network calculus is avoided

In our framework, the delay distribution at each node is calculated 
with the service curve of the isolated node and the distortion of the 
covariance structure of traffic crossing nodes is accounted for with a 
novel method for the calculation of the variance of the cumulative 
traffic at the node’s output, given the characterization of input traffic 
flows

The approximations provided by the bounded-variance network 
calculus, tested in sample scenarios widely used to evaluate the 
performance of stochastic network calculus methods, are surprisingly 
good and they improve dramatically the tightness of the current best 
bounds of the stochastic network calculus 
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The bounded-variance network calculus

The bounded variance network calculus, is a framework for the extension of 
the two-moment analysis to end-to-end paths where traffic flows cross 
multiple schedulers

The hardest problem to be faced by multi-node network analysis is the 
characterization of the output traffic of a scheduler, a very difficult but 
unavoidable task, as the traffic output by a scheduler is the input traffic of the 
next scheduler

The bounded variance network calculus addresses this problem by providing 
an approximation of the variance of the scheduler’s output traffic, in order to 
be able to iterate the MVA equations 

This approximation is based on a novel inequality on the variance of the 
minimum of two bivariate Gaussian random variables

This inequality (Giacomazzi-Bellini 2008) states that, given two bivariate 
Gaussian random variables x and y, the variance of z=min(x,y) is bounded 
as

( ) ( ) ( )( )var max var , varz x y≤
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The bounded-variance network calculus
This inequality provides an upper bound of the variance of the output traffic of a node 
as a function of the node’s input traffic

In fact, let us consider a tagged flow crossing a sequence of H schedulers, where 
each scheduler provides differentiated services to multiple service classes, numbered 
from 1 to Qh and, in the hth scheduler, the flow is served in service class qh

By denoting the input and output cumulative traffic for the tagged traffic flow at the hth 
scheduler of the end-to-end path as

respectively, and by referring to the service envelope of the tagged flow at the hth 
scheduler as 

it can be easily shown that the cumulative output traffic  of the tagged flow at the hth 
scheduler is given by: 

( ) ( )in out,
h hq qX t X t

( )
hq

S t

( ) ( ) ( )( )out inmin ,
h h hq q qX t X t S t=
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The bounded-variance network calculus

This relation is derived as follows. The scheduler cannot output a 
traffic greater than the offered traffic, it is easily recognized that

Moreover, for a strict priority scheduler: 

that is, the available service  

for the reference traffic flow is statistically lower-bounded by the total 
service capacity, minus the envelopes of the input traffic flows of 
service classes with better service priority

( ) ( )out in≤
h hq qX t X t

( ) ( )
1
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−
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The bounded-variance network calculus

Let us define the available capacity  

as the output line capacity available for the reference traffic flow

The available capacity differs from the available service, as the latter 
represents an output traffic, while the former is the potential volume of 
traffic that the scheduler can output for the reference traffic flow

It is easily understood that, for the strict priority scheduler: 

( ) ( )
1

out in
av,q
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The bounded-variance network calculus

In fact, in a static priority scheduler, the amount of service capacity 
available for the reference traffic flow does not depend on the backlog 
of traffic stored in the corresponding queue, as it depends solely on 
the volume of traffic offered by the service classes with a smaller 
priority index

Therefore, the available capacity represents the available capacity for 
the reference traffic flow, independently on the volume of traffic that it 
offers to the scheduler, that is, the input traffic of class i may be equal 
to, greater than or lower than the minimally backlogged input traffic  
and, in all these cases, the capacity is given by

The scheduler cannot output, for the reference traffic flow, a traffic 
greater than the available capacity, therefore, 

( ) ( )
1

out in
av,q

1

max 0,
−

=

 
Ξ = − ÷

 
∑
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h
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j
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( ) ( )out out
q av,q≤ Ξ

h h
X t t
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The bounded-variance network calculus

Thus, 

as the scheduler cannot serve more traffic than the available service 
capacity

In conclusion, 

is a statistical traffic envelope for the traffic output by the scheduler 
for service class i

Therefore,

( ) ( )out ≤
h hq qX t S t

( ) ( ) ( )( )out inmin ,=
h h hq q qB t B t S t

( )( ) ( )( ) ( )( ) ( )( )( )out out invar var max var , var
h h h hq q q qX t B t B t S t≤ ≤
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The bounded-variance network calculus

Given a sequence of H nodes crossed by a tagged traffic flow, we 
proceed iteratively starting from node 1 and, since 

 we can calculate a statistical characterization of the input traffic of 
each node through

 Therefore, we can calculate with the MVA the probability density  of 
the delay dh at the hth node

 Finally, since in a series of H nodes the end-to-end delay  is equal to 
d

e2e
=d

1
+d

2
+...+d

H

 we calculate the density of the end-to-end delay as f
de2e

(t)=d
d1
(t)+f

d2
(t)+...

+f
dH
(t) 

( ) ( )
1

in out

h hq qX t B t
+

≈
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The bounded-variance network calculus

 Finally, the probability of violating an end-to-end delay threshold is

 Similar considerations can be applied to other types of schedulers

( ) ( )
22Pr .

e ee e d

d

d d f dτ τ
∞

> = ∫
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An example of application
We consider a sequence of H strict-priority nodes

We refer to the flows which traverse the network as through flows, and to the flows which transit 
the network as cross flows

We have a series of H nodes, and each node receives and forwards to the next node in the 
chain the through traffic flows

Each cross flow traverses one node and then it exits the network

We suppose that each node acts as a Static Priority scheduler with two traffic classes

The cross and through traffic flows are served with the high and low priority, respectively

Therefore, cross flows belong to service class 1 and through flows are served in class 2

 

Node 1

Through
flows

Cross
flows

Node 2

Cross
flows

Node H

Cross
flows

Through
flows
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An example of application

We specialize our calculations for a commonly adopted scenario where both 
through and cross sources are modeled as the Markov-Modulated On-Off 
sources
The total number of through flows is equal to N2 and the number of cross 
flows that traverse each node is equal to N1

The parameters of the Markov model of cross and through flows are (λ1, µ1, 
P1) and (λ2, µ2, P2), respectively. The output capacity of each node is equal to 
C and it is shared among N1+N2 flows 
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An example of application

We have the objective of calculating a bound for the end-to-end delay of 
through flows and we need the service envelope of through flows at the 
generic node h

We will obtain the result by applying the bounded variance network calculus 

The traffic envelope of the aggregate input cross flows at the h-th scheduler 
is referred to as  and it evaluates to 

 

Node 1

Through
flows

Cross
flows

Node 2

Cross
flows

Node H

Cross
flows

Through
flows
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An example of application

The service envelope of the through flows at the hth scheduler, referred to 
as S2,h(t), is 

The fresh through flows at the first node have the traffic envelope

 

Node 1

Through
flows

Cross
flows

Node 2

Cross
flows

Node H

Cross
flows

Through
flows
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An example of application

we proceed with the following conservative approximation 

that will allow us to derive very simple closed-form expressions of the end-
to-end delay 
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Through
flows

Cross
flows
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Cross
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flows

Through
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An example of application

We obtain the variance of the traffic envelope of through flows at the 
input of node 2: 

By iterating this procedure for the downstream nodes, we easily 
observe that we obtain the same bound for the variance of the 
through traffic at the input of all the Static Priority schedulers:

( )( ) ( )( ) ( )( ) ( )2,2 2,1 2 2 2 1 1 1 1 1 1 2 2 2 1 1 1var var max max , , max , .in outB t B t N r b t N rb t N rb t N r b t N rb t= ≤ =

[ ] ( )( ) ( )2, 2 2 2 1 1 11, : var max , .in
hh H B t N r b t N rb t∀ ∈ ≤
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An example of application

Therefore, we can calculate the delay bound violation probability at 
the hth scheduler:

where

[ ] ( ) ( ) ( )( )2
2 2 1 2 2 1 22

2

1, : Pr exp 2
C A

h H D d C A B C A B d
B

 −∀ ∈ > ≤ − − − − ÷
 

( )
1 1 1 2 1 1 2 2

1 1 1 1 2 1 1 1 2 2 2 1 1 1max ,

A N r A N r N r

B N rb B N rb N r b N rb

= = +
= = +
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An example of application

To simplify the notation we write 

The probability density of delay for the through (class 2) flows at node 
h is equal to 

and we find the density of the end-to-end delay as: 

Finally,

( ) ( )2 2 2 2expP D d dκ> ≤ −

( ) ( )
, 2 2exp

i hdf t tκ κ= −

( ) ( ) ( )
2, 2

1
2

2exp .
1 !e e

H H

d

t
f t t

H

κ κ
−

= −
−

( ) ( ) ( )
, 2

1
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i e e d
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j
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∞ −

−

=
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An example of application

We use the following numerical parameters:

And the capacity of the output links of all schedulers is equal to 100 
Mbit/s
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An example of application

The figure shows the quality 
of the analytical 
approximation for different 
values of the end-to-end 
delay threshold and different 
number of hops

The approximation is rather 
good
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An example of application

End-to-end delay bound 
exceeded with probability 10-1 
(a), 10-6 (b), and 10-9 (c) as a 
function of the total number of 
flows per node (N1+N2) with 
H=5 and H=10. For each value 
of H the Figure shows results 
obtained with (a) min-plus 
algebra, (b) our closed-form 
analysis, and (c) simulation. 
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An example (1)

For example, let us consider a scenario where an aggregate flow 
traverses the network (through flows), and at each node another 
aggregated flow crosses the network

We have a series of H nodes, and each node receives and forwards 
to the next node in the chain the through traffic flows

Each cross flow traverses one node and then it exits the network
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An example (2)

The total number of through flows is equal N and also the number of 
cross flows that traverse one node is equal to N

Therefore, each node treats 2N flows, N through and N cross flows 
The output capacity of each node is equal to C and it is shared 
among 2N flows

Each node acts as a simple FIFO (First In First Out) scheduler
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An example (3)

For the sake of simplicity, we consider the case of traffic micro-flows 
modeled as two-state continuous Markov chains; an aggregate is composed 
by N micro-flows

The transition rate from the OFF state to the ON state is λ [s-1], while the rate 
of the inverse transitions is equal to λ [s-1]

In the ON state, a micro flow transmits at a constant rate of P [bit/s]

No traffic is generated in the OFF state

These sources could model variable bit-rate G.726 VoIP codecs or UDP 
data sources

OFFON

λ

µ

P
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An example (4)

With the bounded variance network calculus, we calculate the probability density of 
delay of through traffic at a generic node as 

( ) ( )

( )
2

3

2 2

exp
4

κ

λ
λ µ

λµ
λ µ

−

  
− ÷ ÷ ÷+ ÷ > ≤ − = ÷

 ÷
 ÷+ 

t
h

C C N P

P d t t e
N P
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An example (5)

The probability density of end-to-end delay is equal to

( ) ( ) ( )
2

1

exp
1 !e e

H H

d
t

f t t
H

κ κ
−

= −
−
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An example (6)

The probability of exceeding the end-to-end delay bound d is equal to

Note that the solution is analytical

( ) ( )1

2
0

Pr
!

jH
t

e e
j

t
d t e

j
κ κ−

−

=

> = ∑
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An example (7)

The graph compares, for the selected scenario, the delay bounds of the min-plus 
algebra, the approximated delay of the bounded variance network calculus and the 
real performance of the network measured by computer simulation

The difference is striking: For example, with H =10 and 300 flows, the min-plus 
algebra provides a bound of around 160 ms, while the delay bound of the bounded-
variance network calculus is equal to 3.58 ms, the real delay is of 3.4 ms 
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A multinode case
 

Scheduler SP1 
Z1:priority 1 
Y1:priority 2 
X1:priority 3 

C1=10 Mbit/s

Y1(t)

X1(t) X1,out(t)

X2,out(t)

Z1(t)

Scheduler EDF2 
δZ2=10 ms   
δY2=5 ms
δX2=1 ms 

C2=25 Mbit/s

Y2(t)

X2(t)

Z2(t)

Scheduler SP3

X1,out :priority 1 
X2,out :priority 2    

C3=25 Mbit/s

Scheduler SP1 
Z1:priority 1 
Y1:priority 2 
X1:priority 3 

C1=10 Mbit/s

Y1(t)

X1(t) X1,out(t)

X2,out(t)

Z1(t)

Scheduler EDF2 
δZ2=10 ms   
δY2=5 ms
δX2=1 ms 

C2=25 Mbit/s

Y2(t)

X2(t)

Z2(t)

Scheduler SP3

X1,out :priority 1 
X2,out :priority 2    

C3=25 Mbit/s

2r_Z1 (Mbit/s)

150b_Z1 (kbit)

1r_Z2 (Mbit/s)

50b_Z2 (kbit)

2,5m_Y2 (Mbit/s)

5a_Y2 (Mbit s)

0,85H_Y2

3,2m_Y1 (Mbit/s)

5a_Y1 (Mbit s)

0,99H_Y1

3r_X1 (Mbit/s)

100b_X1 (kbit)

12,5b_X2 (kbit)

4r_X2 (Mbit/s)

25C3 (Mbit/s)

25C2 (Mbit/s)

10C1 (Mbit/s)

2r_Z1 (Mbit/s)

150b_Z1 (kbit)

1r_Z2 (Mbit/s)

50b_Z2 (kbit)

2,5m_Y2 (Mbit/s)

5a_Y2 (Mbit s)

0,85H_Y2

3,2m_Y1 (Mbit/s)

5a_Y1 (Mbit s)

0,99H_Y1

3r_X1 (Mbit/s)

100b_X1 (kbit)

12,5b_X2 (kbit)

4r_X2 (Mbit/s)

25C3 (Mbit/s)

25C2 (Mbit/s)

10C1 (Mbit/s)

TABELLA PARAMETRI
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Statement of the problem
In the figure, X1(t) has a linear variance envelope with parameters r_X1=3Mbit/s and b_X1=100 kbit
Y1(t) is fGt with parameters m_Y1 = 3.2 Mbit/s, a_Y1 = 5 Mbit . s, H_Y1=0.99
Z1(t) has a linear variance envelope with parameters r_Z1=2Mbit/s, b_Z1=150 kbit
Scheduler 1 is SP; flows X1(t), Y1(t) and Z1(t) are served with priority 3, 2 and 1, respectively
The capacity of the scheduler output line is 10 Mbit/s
X1,out(t) is the output of X1(t)
X2(t) has a linear variance envelope with parameters r_X2= 4 Mbit/s, b_X2= 12.5 kbit
Y2(t) is fGt with parameters m_Y2 = 2.5 Mbit/s, a_Y2 = 5 Mbit . s, H_Y2 = 0.85
Z2(t) has a linear variance envelope with parameters r_Z2= 1 Mbit/s, b_Z2= 50 kbit
Scheduler 2 is EDF, X2(t) has service deadline δX2=1 ms, Y2(t) has service deadline deadline δY2=5 
ms and Z2(t) has service deadline δZ2=10 ms
The capacity of the scheduler output line is 25 Mbit/s
ìX2,out(t) is the output of X2(t)
Scheduler 3 is SP where X1,out(t) is served with priority 1 and X2,out(t) with priority 2
The capacity of the scheduler output line is 25 Mbit/s
Calculate the probability that the delay of flow X2,out(t) exceeds 90 ms in scheduler 3 
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Solution (scheduler 1)

Let us consider scheduler 1; the input flows have average value and 
variance given by

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

1

1 1

1

1

1 1

1

1 1

6
1

6 6 6 2
1

6
1

2 6 6 1.98 12 1.98 2
1

6
1

1

2 10  bit/s

var 2 10 0.15 10  0.3 10 bit /s

3.2 10  bit/s

var 3.2 10 5 10 =16 10  bit /s

3 10  bit/s

var 0.3

Y

Z

Z Z

Y

H
Y Y

X

X X

E Z t r t t

Z t r b t t t

E Y t m t t

Y t m a t t t

E X t r t t

X t r b t

 = = ×


= = × × × = ×
 = = ×


= = × × × ×
= = ×

= = × 12 210  bit /st




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Solution (scheduler 1)

The service envelope for X1(t) is

The average value and variance of X1out(t) are

( ) ( ) ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1

1

1

1 1

6 6 6 6
1 1

6 12 1.98 2
1 1

10 10 3.2 10 2 10 4.8 10  bit/s

var var var 0.3 10 16 10 bit /s

X

X

X

S t Ct Y t Z t

E S t Ct E Y t E Z t t t t t

S t Y t Z t t t

= − −

= − − = × − × − × = ×

= + = × + ×

( )( ) ( )( )
( )( ) ( )( ) ( )( )( )1

1,out 1

1,out 1var max var , var X

E X t E X t

X t X t S t

=

=
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Solution (scheduler 1)

The figure shows the variance of X1out(t)
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Solution (scheduler 2)

In scheduler 2, the inputs are

( )( )
( )( )

( )( )
( )( )

( )( )
( )( )

2

2 2

2

2

2 2

2

2 2

6
2

6 6 6 2
2

6
2

2 6 6 1.7 12 1.7 2
2

6
2

2

1 10  bit/s

var 1 10 0.05 10  0.05 10 bit /s

2.5 10  bit/s

var 2.5 10 5 10 =12.5 10  bit /s

4 10  bit/s

var 4 1

Y

Z

Z Z

Y

H
Y Y

X

X X

E Z t r t t

Z t r b t t t

E Y t m t t

Y t m a t t t

E X t r t t

X t r b t

 = = ×


= = × × × = ×
 = = ×


= = × × × ×
= = ×

= = × 6 6 12 20 0.0125 10 0.05 10  bit /st t




× × = ×
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Solution (scheduler 2)

The service envelope for X2(t) is

The average value and variance of X1out(t) are

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2 2

2

max max

var max max
Y

X Y Y X Z Z X

H

X Y Y Y X Z Z Z X

E S t Ct m t r t

S t m a t r b t

δ δ δ δ

δ δ δ δ

= − − − − − −

= − − + − −

( )( ) ( )( )
( )( ) ( )( ) ( )( )( )2

2,out 2

2,out 2var max var , var X

E X t E X t

X t X t S t

=

=
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Solution (scheduler 2)

The figure shows the variance of X2out(t)
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Solution (scheduler 3)

In scheduler 3, X2out(t) has service envelope with the following 
features

The α(t) function is then given by

( ) ( )
( )( ) ( )( ) ( )( )

( )( ) ( )( )

2,

2,

2 ,

1,

1, 1

1,var var

out

out

out

X out

X out

X out

S t Ct X t

E S t Ct E X t Ct E X t

S t X t

= −

= − = −

=

( )

( )( ) ( )( )
( )( ) ( )( )

2,

2,

2,

2,

2,var var

out

out

out X

X out t

out X

E X t E S t d

X t S t d
α

− +
= −

+ +
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Solution (scheduler 3)

The figure plots the alpha function
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The minimum value of alpha is 3.53 thus the probability of 
exceeding the delay threshold is equal to 0.0019



Paolo 
GiacomazziCopyright © 2009.  All rights reserved.43

Further considerations

The procedure can be 
repeated with different 
delay thresholds, as 
shown in the figure

Remarkably, the delay 
distribution of X2out in 
scheduler 3 is fat-tailed

This is due to the 
interference form LRD 
flows
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On the variance of X2out(t)

It is interesting to note that the 
variance of X2out(t) differs 
significantly from that of the fresh 
flow X2(t)

We recall that

Then, for SX2(t) we have

( )( )
( )( )

6
2

12 2
2

4 10  bit

var 0.05 10  bit

E X t t

X t t

 = ×


= ×
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( )( ) ( ) ( )

2 2 2 2 2 2 2
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2 2 2 2 2 2 2 2 2

2

2

2
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1.712 3 9 3

max 0, max 0,

var max 0, max 0,

25 10 25 10 4 10 1 10 9 10

var 125 10 4 10 50 10 9 10

Y

X Y Y X Z Z X

H

X Y Y Y X Z Z Z X

X

X

E S t Ct m t r t

S t m a t r b t

E S t t t t

S t t t

δ δ δ δ

δ δ δ δ

− −

− −

 = − − − − − −

 = − − + − −
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
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On the variance of X2out(t)

Thus,

Then, X2out(t) is offered to the third 
Strict Priority scheduler, and we 
want to calculate the variance of the 
output flow of this scheduler (we call 
it X3out(t))

var(X3out(t))=max(var(X2out(t)), 
S(X2out(t))):

where

And

Thus

( )( ) ( )( ) ( )( )( )
( ) ( )( )

22,out 2
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var max var , var
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var var var
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Analysis of the behavior of X3out(t)

Now, we consider two scenarios
Scenario 1: X2(t) is directly offered to a 
FIFO scheduler
Scenario 2: X2(t) is offered to the same 
FIFO scheduler after having crossed the 
network (i.e., we offer X3out(t)) 

Scheduler SP1 
Z1:priority 1 
Y1:priority 2 
X1:priority 3 

C1=10 Mbit/s

Y1(t)

X1(t) X1,out(t)

X2,out(t)

Z1(t)

Scheduler EDF2 
δZ2=10 ms   
δY2=5 ms
δX2=1 ms 

C2=25 Mbit/s

Y2(t)

X2(t)

Z2(t)

Scheduler SP3

X1,out :priority 1 
X2,out :priority 2    

C3=25 Mbit/s

Scheduler SP1 
Z1:priority 1 
Y1:priority 2 
X1:priority 3 

C1=10 Mbit/s

Y1(t)

X1(t) X1,out(t)

X2,out(t)

Z1(t)

Scheduler EDF2 
δZ2=10 ms   
δY2=5 ms
δX2=1 ms 

C2=25 Mbit/s

Y2(t)

X2(t)

Z2(t)

Scheduler SP3

X1,out :priority 1 
X2,out :priority 2    

C3=25 Mbit/s

2r_Z1 (Mbit/s)

150b_Z1 (kbit)

1r_Z2 (Mbit/s)

50b_Z2 (kbit)

2,5m_Y2 (Mbit/s)

5a_Y2 (Mbit s)

0,85H_Y2

3,2m_Y1 (Mbit/s)

5a_Y1 (Mbit s)

0,99H_Y1

3r_X1 (Mbit/s)

100b_X1 (kbit)

12,5b_X2 (kbit)

4r_X2 (Mbit/s)

25C3 (Mbit/s)

25C2 (Mbit/s)

10C1 (Mbit/s)

2r_Z1 (Mbit/s)

150b_Z1 (kbit)

1r_Z2 (Mbit/s)

50b_Z2 (kbit)

2,5m_Y2 (Mbit/s)

5a_Y2 (Mbit s)

0,85H_Y2

3,2m_Y1 (Mbit/s)

5a_Y1 (Mbit s)

0,99H_Y1

3r_X1 (Mbit/s)

100b_X1 (kbit)

12,5b_X2 (kbit)

4r_X2 (Mbit/s)

25C3 (Mbit/s)

25C2 (Mbit/s)

10C1 (Mbit/s)

TABELLA PARAMETRI

X3,out(t)
FIFO

FIFO
X2(t)

Scenario 1

Scenario 2
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Analysis of the behavior of X3out(t)

Now, the calculation is simple, as it is sufficient to calculate the alpha 
function in both cases:

By repeating the calculation for different values of d, we obtain the 
delay curve in both cases

( ) ( )
( )( )

( ) ( )
( )( )

2 2

2 3,

2 3,

; ;
var var

out

X X
X X

out

m t C t d m t C t d
t t

X t X t
α α

− + − +
= − = −
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Analysis of the behavior of X3out(t)

The difference between the 
queueing behavior of X2(t) and 
X3out(t) is impressive

X2(t) acquires a heavy LRD 
when it crosses the network

Actually, it interferes with a flow 
with H=0.99, an extremely high 
value of hurst parameter

X2(t) seems to acquire a LRD 
behavior

This is a known fact: LRD tends 
to spread in the Internet

However, the methods 
described in this courses are the 
first allowing us to calculate 
analytically this kind of behavior
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